U. S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
NATIONAL WEATHER SERVICE
NATIONAL METEOROLOGICAL CENTER

OFFICE NOTE 304

A KALMAN FILTER FOR A TWO-DIMENSIONAL SHALLOW-WATER MODEL"'
FORMULATION ‘AND PRELIMINARY EXPERIMENTS

DAVID F. PARRISH :
- SHORT-RANGE MODELING BRANCH
DEVELOPMENT DIVISION '

~and

STEPHEN E. COHN*
COURANT INSTITUTE OF MATHEMATICAL SCIENCES
NEW YORK UNIVERSITY
NEW YORK, N. Y. 10012

FEBRUARY 1985

THIS IS AN UNREVIEWED MANUSCRIPT, PRIMARILY INTENDED FOR
INFORMAL EXCHANGE OF INFORMATION AMONG NMC STAFF MEMBERS.

*Supported in part by NOAA Grant VA84AArD 00018 by a Control Data Corp.
PACER Fellowship, by NASA Grants NAG-5-341 and NSG-5130, by NSF Grant
, INT—8314934, and by Grant 1.01.10.021-83 of the Brazilian agency CNPq.



Coid

o A RALMAN FILTER FOR A TWO-DIMENSIONAL SHALLOW-WATER MODEL:
- " FORMULATION AND PRELIMINARY EXPERIMENTS

:R“CQnteﬁ£sE ”J
Page
Abstract g ;_ : ‘ .J': _ ‘ _ , didii
I. Introduction- ’ ’ » o 1
IT. The Kalman Filter ' - 4
ITI. Computational Considerations in theJForecast'SteP‘ ' ‘ 8
iV. Computational Considerations in the Analysis Step » 14
v. The Shallow*Wate; Model | v : o ’ 21
VI. Numerical Experiments =~ . - 25
VII. Concluding Remarks E ' 33
‘ A}}pendix A, Diagdrialwise Matrlx Triple Product | 4 34
Appendix B. Serial Processing of Observations ‘ 40
Appendix C. Finife—Differenée Scheme 43
References R ' : o 48
Tables ' ;‘ : ; 2 ‘   : 50
Figures o S ' '  o _ 53



ifi

ABSTRACT

The Kalman filter is a data aésimilatiqn schemebwhich, unlike currently
operétidnal methods suéh as’optimal interpblétioﬁ (01), makes systematic use
of fbrécast modei dynamics in brder fo accurafély'detérﬁine thg.évdlution of the
forecast error coVariance matrix; Prgvioﬁé sthdies»wfth aAsimple one—dimen—
sionai model indicated that th; Kalman'filter; if %ppliéd opérationglly,
would yield analyzed and subsequent3forécas;‘fieldsfsuperiof_fovthose resultiﬁg
from OI. These studies did not addréss_the enormouélcomputétional burden
that tﬁe}Kalman filter woﬁid appéarftd‘pOQé‘if applied iﬁ an‘ope?étional setting,
to an actﬁal nﬁmerical»weather predictioﬁ‘(NWP) model. ‘

In this fépbrt we'interuCe‘é ﬁumbér ofvtechniques which, taken together,
reduce dramatically the computational c0mp1exity of the Kalman filter. The
new filter algorithm gains its efficiency, in part, by taking'expliéit adﬁan—
tage of the fact that forecast errors are significantlyvcorreiafed only over
rather gmall disténées. It also utilizeg’fully the vector—proéessing capa-—
bilities of the CYBER 205 computer.“Part of the overall method is an analysis
algorithﬁ which procesées observations one at é'time, i.e., it loops on obser—
vaﬁibns réﬁhef than analyéis grid points, thereby eliminating boﬁh the. neces-—
éity;bfvmétrix inversiéﬁs and the necessity'of restérting fhe entire analyéis
to accoﬁodate late—arriving observations. This'énalysis algorithm wbuld‘be
useful in OT schemes‘as well as in the Kélman filter.

We apply thé Kalman filter to a two-dimensional shallow-water channel
:.ﬁodel. Numerical experiments demdnstrate,kfirst of all, that the filter is
indeed computationaily feasible in two dimensions, The results show also

that actual forecast error correlations, which are computed exactly by the
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Kglman filter differ‘markédly from the réther simple, homogeneous, correla-—
tiéns prescribed currently in the NMC'OI analysis system,  The‘eXperiments
‘suggest é»number of improveﬁents to our computatibnéllaptroach;‘which should
render the Kalman filter practical for operatiéﬁél data éssimilation.into

fully three~dimensional NWP models.



1. Introduction

Data assimilétion'methods~are désigned ﬁo combine observations of thé
‘atmosphere at a,given timeyﬁith,avforecast-valid‘at that time;‘in’such-a way
as to determine the best posSible eStiﬁate pf the atmospheriC'étate. Funda—r
ménfal cénéiderétioﬁs imply that, undef“ratﬁef4mi1d aésumptions, the statis-
tically optimal eétimétg‘is,ébtained_by Iineé£1y combining the set of obser-
vations. snd thé fprécaéﬁ fié¥d}fénd.w§ighting each according to its errér co—
Variancé métfix;‘ Thﬁs, twoukéylipgtedients of optimal interpolation (0I)
analysis‘schemesvaféaghetégfecést}gna‘observétioﬁ error covariances. Analysis
accuracy depends»stfonélY:on‘;hgﬁgccuracy ﬁithfwhich these covariances are
specified. wThe-fofégéstiefrér covafianqe*is usually the less accurately known
of the two. It isvspecified iﬁ'thevoi syétem at NMC by aSsuming certain time—
and séaceQindependent forecast erféf Correlétioﬁ‘functioné and by assuming a
simplé spatial depen&énce fof»the growtﬁ rate of forecast érror variances.

Recent studies, summarized in Ghil et ai. (1982) havg suggested the
Kalman filter as a potential alternative to the conventional OI methodology.
The Kalman filter differs from OI primarily in that it determines the forecast
error covariance accurateiy,.byfusihg the forecast model itself to evolve
the covariance in time. This difference is crucial, The Kalman filter pro-
-perly accounts for propﬁgation of information bétween regions of different
data density and quality, tﬁus leading to supérior‘analyses and subsequent
forecasts., On the other hand, tﬁe correct evoiution of the forecast error
é0variance. given by the Kalﬁan filfer, would appeaf to present an enormous
computational burden for'actﬁal’numerigal weather prediction (NWP) models.
Previdué‘stﬁdieé have beeﬁ'catried out uéing simple one-dimensional models.
| iﬁ this report'webintroduce a number of teghniqﬁes_which, taken togethér,

reduce dramatically the computational complexity of the Kalman filter. We



appiy the new filter algorithm to‘aséiﬁilate data into é tWD;dimensional
shallow?watef channél modél.~ The”exﬁerimenté demonstrate, first of all,

that the combutatidn”is indeed féaéible for a two—dimensional médel. Second,v
they both confirm and extend the earlier, one—dimensional results. In parti-
cular, they show clearly that actUal forecast: error cofrelatiéns differ
markedly from the rather simp1e,’hombgéneous,'corfelations prescribed currently
in the OI system at NMC. Third, by simulating different‘data distfibutiOns,
the experiments.show in a precise and ﬁuantitétive way which distributions

are the most effecfive at .reducing overall forecast error. The Kalwman filter
is ideal for carrying out such observing system simulation experiments (OSSE)
because.if determines forecast error varianqes accurately. .

The'key idea we héve used in reducing the cdmputétional cﬁmplexit? of‘
the Kaiman filter is to calculate only thqse elementé of the coVariénce.ﬁé—
trix which differ significantly from'zero,’andkwe have organized our alédrithm
around this approach. Since covarianéés tend:to zero with increaéing{distanqe,
this meaﬁs that we calcﬁlaté and store only a number of diagonals of the fore-
cast error éovafiance matrixg rather than the enfire matrix.  Since the fore-

. cast’ model dynamics‘must be apbliédvrepetitively fo theée diagonals, we also
inérease computational‘efficiency by ‘explicitly formulating the forecast
modelAas armatrix, whose elements need be calculated only onCé;  This matrix
also consists‘of dﬁly a small number of nonzero djégonals, and ité action on
the forecast grror»covariance'ﬁatrix is calCuléted by an algorithm for dia—
gonalwise matfix mu1tip1icati6n~Which was dgsigned:for éfficient Computation
on the CYBER 205 vector pybggésor at NMCf

Our Kaimaﬁ filter scheme also imﬁlements an‘algofithm which pfoceSses
obserVéEions Ser1611Yg'ioea,»oné'a£la7ﬁimei‘1the algorithm loops over the

observations, rather than'analYSislgrid‘points. ‘This algorithm‘eliminates



both ﬁhe necessity of_matrix inversion and the neceséity of restarting the
entire analysis to aécomddate late-arriving observations. This analysis
algorithm would be' useful in Oi séhemes‘as well as iﬁ ﬁhe Kalman filter.
After_reviewing_thé essentials'of Kalman filtering in Section II, we
aescribe>our‘method for évolying the forecast error covariance matrix in
Section iII. TheISerial bbservation—proceséing algorithm is detailed in
Sectioﬁ IV. The shailow—water.model is formulatea in Sectibn V and the
numerical resulfs are presénted in Sectidn VI. Concluding remarks appear
win Section VII, This paper is meént; in part, as a technical feport, and

a number of the technical details are explained in three appendices.



- IT. The Kalman Filter

1n this section we déscribe thé essentials of the Kalman filter. Moré
detailed ipformation.can bé féﬁnd,iﬁ.standard texts such as Gelb (1974) and
Jazwinski(1970), and in Ghil EE_El; (1981) and Cohn (1982).

Suppose we are given a numerical foregast model

) 4. »i, qyd\ ‘ . (2.1)
'W}L T

. o . N :
- Here “%h is the forecast vector at time step k and k&r\is the analysis

£

N : N
vector at the previous time step; we simply define h&é‘ z b{krl if no

observations were analyzed then: Both forecast and analysis vectors have

length n, the number of degrees of'freedom of the model. In a finite-difference

model, say, this n is the‘number of grid points times the number of dependeént

variables. The n x n dynamlcs matrix rq{ may depend on time,liz'= q%r 2
and reflectlng model nonllnearlty) depends on - Uﬁk‘ as. well ﬁQ{ TFL!( A%\

“Equation (2.1) 51mply sets-up a notation in which we will view one time

" step of a forecast as being a matrix-vector multiplication. The trivial

observatioﬁ that one .time step caﬁ be viewed as such will actually‘be one
key to ourbéomputational simplificatibn of the Kalman filter.

Since the objectivé of‘an analysis system is to estimate the ESEE atmos—
phefic state, whose evolution is modele@[imperfectly by (2.1), wekaséuﬁe

that the true state, denoted by' UJﬁ? , evolves instead according to

X

% * * (2.2a)
, Uozk = "FE]@\ V‘LF\. *‘ Q{kq
where i¥~ LU{A_‘ ~ and where the model error, lﬂz N is a ran-

""dom n—vector Which is white in time and. has mean zero and covariance matrix (§A:

e, B Ghy o



Here the symbol E denotes the expectation, or ensemble—averaging operator,
theqsuperscript z‘denotes_the transpose, and ghﬂb is the Kronecker delta,
sh‘lz O  for A'#ﬁ “and Shh: | Equatlons (2. 2) actually define what we

mean by the true atmospheric state: it is the n-vector hdl_ .

We assume further that meteorological observations kﬂk are in fact
"~ linear combinations of elements of the true state vector UQh. » contaminated

by White‘noise:

thla. i h Ty | (2.3a)
The length of the observatlon vector U{h is the number of observations.B
available at tlme k ‘) YA 'The observation fﬁatrix }4& accounts for
1nterpolat10n between model grld p01nts and observatlon locatlons, and for
any necessary conver31on between observed varlables and state varlables, Cesy

- o
between satelllte radlances and temperatures. The observatlon error, 2{& s

is a random p-vector which is assumed to have mean zero and covariance matrix

' Tzh' , and is assumed to be uncorrelated with the model error:

RJ’) %) P‘A%M 5 o .(‘2.3b’;)‘
E(ﬂr;)(ﬁ:;f =0 _"z % | | " . (2.30)

Under>the stated assumptions. the extended Kalman filter (EKF) is the

Elyzo

data assimilation system
w_’: = q?/a—i W:\ N o | - | o (2..4a)
?: _»\E‘,‘?: WAT‘ +Q,, :) | (2.4b)
P:H;(HAPZHZ +Rk)'l e D (2.4¢)

t
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P: (1- KL Hk} ?: , o | (2.40)
o 4 - e ' ya .
= Wy + Kk(wﬂ.\ . thjh) . (2-4e)

for k=1,2,3,¢00 . Equations (2.4a,b) are the state forecast and estimation

£

error covariance forecast, respectively. Equation (2.4¢) gives the Kalman

gain matrix *&& which is the weight with which observations and forecast
are combined in (2.4e) to yield the analyzed field LQL . Equation (2.4d)
. -8 )
gives the matrix ‘ak - which is needed at the next time step in (2.4b).
In case the dynamics are linear, i.e., if fqr- does not depend on w,
then the matrices ?;. and Yﬁx in (2.4b-d) are precisely the forecast
and analysis error covariance matrices, i.e.,

%,m ‘ T ' :
P}A s E(‘*ﬁf‘a'“ff) (w:)& - ldf) . .  (2.5a,b)

In this linear case, equations (2.4a-e) are known simply as the Kalman, or

Kalman-Bucy filter, and they represent a data assimilation scheme which is
optimal in the sense of minimizing the analysis error and subsequent fore-

cast error at every grid point, given all current and previous observational

o : 7 b :
information. If in addition the model error R& and observational error
%& ~are Gaussian, the Kalman filter is optimal in an even broader mathe-

‘matical sense (e;g;,vJazwinski;~l970)-

‘_‘In the nqnliﬁéar‘éase, the EKF (2.4a-e) is only a first—order approxi-
;matioﬁ tq thé'dpﬁimél filter. From a computational standpoint, however, it
. is élear'thét the EKF énd.tﬁe‘Kalmén.filter are nearly idehtical,'and most
néafly;éptimél:éiternaﬁive noélinear filters are 'also similar to the Kalman
‘filter. Sincéibur;purpose in fhis paper is to study the computational issues

in optimal filtering;‘equatioﬁs (2.4a-e) are the primary consideration.



We also pointuoutbthat most:of the assumptions we have made_havefanalo—
gues 1n the formulatlon of present—day opt1ma1 1nterplat10n (OI) analysis
schemes (e. g.;kBergman, 1979 Lorenc, 1981) " Many of these assumptions can
be relaxed. Eor example,~b1ase5pcan4be allowedlln the model and observational
errors (2.2b;{2;35);:correlations,betWeenithese errors (2.3d) can be accounted .
for;fand the errors:needdnotﬁenen‘be White'(2.2c;-2.3c). Each of these gener— .
allzatlons lS accounted for by addltlonal terus in the correspondlng optlmal
filter (Jazw1nsk1, 1970, pp. 158-159 and 209 218) Again, since the main
computatlonal 1ssues arise already in (2 4a—e), we shall not pursue these or
other’generalizations.here.

In the present‘studf W81Will'£éke the model and observational error co-
variance matrices, (lk- and .ﬁlg; ‘,‘to be known. In an operational

setting, one would want to actually‘estimate 'C§h~ and ?K%\.’ Phillips (1982)

" has pointed out, for example, that accurate knowledge of these matrices can

be crucial tokthe successful'performance of the Kalman filter. Dee et al.

(1984, 1985) show that it is possible to estimate (QJL and FX{A_  during

the assimilation process itself, at the cost of calculatlng a number of
additional Kalman filters.  Once agaln, even when C)L. and FRL must be
estlmated, equations (2 4a—e) encompass the main computatlonal burden.

In addition to assuming knowledge of (lkp and ‘KL , we will take the
dynamics to be llnear, so that the filter. (2 4a—e) is indeed optlmal and all |

its 1ngred1ents are known. Thus we have constructed an environment in which

'many questions regarding data assimilation can be answered in a precise way.



III. Computational_Considerations>in theaFOrecastsStep

‘The funaamehtal-difference}betﬁeen our"fofmaiatioh of the data assimilation
(filtering) prbblémvin Section:il and the way in which 0T schemes:are formulated
is’that we have stated in a'precise'and cohvenient way what is'ﬁeant by the
" true atmospheric state: egs. (2 2). This.statement, combined with the forecast
model (2.1) ‘and deflnltlons (2 Sa . b) 1eads, 1h the llnear case, 1mmed1ately
to- equatlon (2 4b) which gives the evolutlon of the forecast error covariance

matrix Bt o

PH%MM%f

: E[’YM BEWE | A o) - & }
-fﬂf (E6 -l ] T +Eu.,&_\(9,*)‘
R AR .

' In fact, it is the appearance of eq. (2 4b5 which dlstlnghlshes the Kalman
filter (2 4a—e) from OI schemes in the‘Kalman_fllter, the forecast error
covariance matrix isvknown precisely; WhereaS*in&bI'schemes it is approximated
by means'of several EQ.EES. assumptiohs (e.gdy Cohn and Morone, 1984; Morone
and'Cohn;‘l984, 1985). This difference is'crucial. The evolution equationbc
(2.4b).determines, for eXamole,'how errors propagate betweenvdata—spafse and
data—dense reglons, and is the basis for the optimality propertles possessed
by the Kalman filter.

“The "analysis" part of the Kalman filter, (2;4c—e), is identical to OI:
giveh thefforecast error covariance matrix, the Kalman filter and OT are
essentiaily the same."Equations (2.4c—-e) are merely a rather shorthand way

of writing the usual 01 analysis equations (e.g., Cohn et al., 1981). 1In



'9.
‘ . « , , : ('Y
6peratidna1‘implementation of 0T, Fhéugh, only the diagonal-elements of ‘31 s
~that is, the anélysié3errdf Qariances, are computéd._ Al'so, data selection
procedurés which réduce fﬁe computational“éffé;;biﬁ cé1cuiéting the gain ma-
trix 62.4c)faré-i;§oked. An efficient.éigorigﬁmﬁfér implementing the analysis
equations (2.4c—e)»ﬁill be described iﬁ Sectioﬁzlv.r

Thefaﬁpéafance_of.éqﬁationi(2f4b) f§%'the—éVoigtioﬁ of the forecast error

covﬁriancevmatrix not_oﬁly aCcagﬁtgsforhEhé;optiﬁalitj”préperties of the
Kalman filtér, b@t also repfeséﬁfS*ﬁhe:éain cémputétionél burden of the filter. .
In the cUrrént sectioﬁ;we'discuss:ﬁeaﬁs of redugiag this bufden. Our remarks
here are of a rather genéral ndtﬁ;e: fﬁey apply,ﬁo Kalman_filtering'in mﬁl—
tiple space dimensions. The particular quel to which we have applied these
techniques‘is not discussedmuntil'Sedtion,v. | |

| The forecast efror.cbvariancé equafion (Z.Ab) is the most'expensive
éalculétion‘in the Kalman filter because it invol#es multiplicafioﬁ of n'x ﬁ
matrices; the state forecast (2.4a), by contrast; involves only matrix—vector
multiplicafion. In a brute—force approach, the estimation error covariance
forecast would therefore fequire'Zn times'as:much work as the state foreéastg

~ B 6 A g

For n=10 or 10 s typical of current numerical wegther.prediction
- (nwP) models; this,islclearlyiprohibitive. We ﬂaVévdeveloped é ﬁﬁmber of
stratégies'to feduce this burden to manageablé lévels.

First, we observe that signifiéant savings can be realized by eﬁplicitly
gomputing ;ndvstofing the élements‘of the dynamics matrix v"g?- . This is
not, of course, what is done in the usual NWP code: 'ﬁylyis available only
as ankoperétor, or procedure, for calculéting u{z giveﬁ Qﬁtl. In the co-
variance équation (2,4b), however, the same dynamigs are needed repeatedly,
2n times in fact, so it is best to éalculate them once and for all. "Doing

so reduces the computational expense of (2.4b) by about an order of magnitude:
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most,of the expense in conventional‘NWP'codes_lies in what can be thought of
as computing’the.elements of the dynamlcs matrix Pq{L , rather than in performing
the matrix—-vector multiplicationyin (2.45).
| The cost, of course,_is.the’additlonalvstorage. This’may pose a problem in

an operationalvsetting; although‘we point out that (2;4b) could be carried out
at lower resolutlon than (2. 4a), reduc1ng both storage and time requirements.
One should also keep in mlnd that computers with about 100 times the storage
‘and'speed of the’CYBER’205 are expectedpto be commercially available in two
years. | |

Second we p01nt out that the dynamlcs matrix (ﬁ{ » as well as the co-

~ o ‘ :

variance matrlces _717} , CQ and»f?% ‘should be stored by diagonals rather
than by.the’conventional column storaée,.and that all matrix-matrix and matrix—
vector operationsbshould>be carrled‘out bykdiagonals. This point is crucial
.for reducing both storage‘and execution—-time requirements. If the dynamics
are based on a finitehdifference'scheme,bthen fq?" has a banded structure: a
small number of dlagonals'ofrrrq{ -contain nonzero elements, end all the re—
.maining diagonals are zero; It is‘natural, then, to store only the nonzero
diagonals, each as a vector, and to formulate the matrix~vector operation
(2.42) and matrix4matrix.operations (2.4b)'in terms of operations with these
vectors. ‘Our choice of dynamics matrixv “@f will be described in detail
’inlsection'V.

Madsen et al. (1976) have shown how to multlply a matrix by either a
' vector or another matrix, using operatlons only on the dlagonals of the matrices.
We show in Appendlx A how-to-evaluate the matrlx trlple product in (2.4a) by
d1agonalw1se operatlons; in such a way that, essentially, \h. is overwritten
on iir « Here we only note that diagonalwise natrix operations are very

efficient on the CYBER 205 vector processor: the diagonals (vectors) are very
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long, they are few in number, and they contain few, if any, zeros.

| This brings us to the third, and most important point concerning imple-—
mentation of (2,4b). It is weil known that forecast error ccrrelations (andb
hence covarlances) tend rapidly to. zero with dlstance. 'That‘is, the,matricee

Peq

of dlagonals differ significantly from zero. The remaining diagonals, in fact

have a banded structure, similar to ﬂlf y in which only a small number

" most of F) , ~can be'considered to be exactly zero. Thus we introduce

what we refer to as the banded approximation in our calculatlon of (2.4b).

Data selection procedures used in OI schemes are similar in spirit to this
banded appronimation.

The banded'approximation Workslin the following way. For a given ex—
periment,-we select a-bandwidth b, which is the number of grid points away
from each base point over which covarlances will be calculated. Only those
‘diagonals of Fl“ Wlthln this distance are stored. The operation i}l—bP- 7EL\
acts only on the stored,diagonals of‘ Flﬁ : ‘the rest are assumed to be
zero and do not enter the computation (Appendix A). This operation also intro—
duces additional diagonals in principle, but they are not calculated: they
are assumed to be negllglbly small.‘ The diagcnals of | (QLC\' within band-
width b are then added to those of rq? E) ﬁf;:\ ;3 yielding YL with
‘bandwidth b. . The experiments,reported in Section VI demonstrate the accuracy
‘cf the‘banded approximation for'different choices of b.
| The banded,approximation reduces dramatically both the execution time and
stofage requirements of the Kalman filter. .We will calculate here the storage
requited as a functicn—of‘bandwidth;.and defer discussion of execution time
to Section V.  Our eineriencekto'date has been that storage poses more of a
problem than eiecntion time. . Ail ourvcomputaticns are performed in central

memory, in order to circumvent paging problems.
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For bandwidth b, the number of grid points,inﬂa given coordinate direction

-which are correlated with each base p01nt is 2b+1, 1.e., b points to each side

of the base p01nt plus the base p01nt 1tself.’ In a d—dlmen31onal‘problem, then,

the number of correlated grld p01nts 1s (290 ‘\' \) , assuming we calculate
in squares (d 2) or cubes (d—3),'rather than c1rcles or spheres, say. In a
problem w1th v dependent varlables (v—3 for the shallow—water equations, and

T . ; : 5,0 .
d=2), the number of nonzero elements in - each row of &D is therefore WI(&QI+\)
The number of rows of ‘P dpls 51mply n—Nv, where N is the total number of
grld points in the model (see remarks follow1ng eq. (2.1)). The total storage

£,
Skrequ1red for 'P ' under the banded approxlmation is therefore -

S-= Nv(ﬁf*‘)

By contrast,

S ’(Nw_r)a

_ 50 , :
if the full f) were stored, without the banded approximation. In either

case, in principle one could reduce the storage by a factor of ‘almost 2 by

‘ o o AR ' ' ‘
taking advantage of the fact that $> -and E) ‘are symmetric matrices.
In fact, the diagonalwise matrix multiplication algorithm (Appendix ‘A) does
calculate only the lower trlangular part of F s and references only the
lower trlangular part of E? . However, the algorithm does not ‘allow the
lower trlangular part of f) to be overwrittenvon that of ?? : storage
is requlred, essentlally, for (the nonzero dlagonals of) one covariance matrix.

In Table I we list the value of S/N '\f <9~9J+ ‘) sy 1e€ay ‘the storage

requlred per grid point, as a functlon of b for the case v=3 and d=2. We also

5 A | » . -
give N = -S{'Uz (QRS+‘) ] ~  for the same case, with S =3X \06 , .as

7. well as the maximum dimensions of a uniform‘square’grid for this .S, namely Jﬁix5;r.
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SCurrently there:are 8 X|0 halfwords of meﬁory on the CYBER 205 at NMC,
of which H'X\bs ;‘ E are acce551ble to the user.' The last row of Table I
"gives the figures cotrespoodlng to ‘the preceedlng rows, but for the case in

fa , , .
which the full P » s stored.

The last row shows that a grid'Of‘only about 580 points, e.g.;.a 24 x 24
‘grid, is permitted 1£ the banded approx1mat10n is not used. In fact, ﬁe were
able to run full- P g fexperiments on a 24 x 24 grid, enough stOrege still
being available for “If, H, Q and R, but not on a 25 x 25 grid. On the other
hand,‘the table shows that a 64 x 64 grid is‘permissible for b=4, and 82 x 82
vfor b=3. Experiments reported in Section VI indicate ‘that a bandwidth of 3o
to 4 gites good accurecy, independently‘of resolution, . The accuracy of the
banded approximation could be improved even further, or the nomber of required
diagonals decreased, by.extrapolating4to_actually calculate nearby diagonals
~rather than setting them_to Zero. | 53& |
As a final remark coneerning storege of ?) s we note that a further

reduction of storage by a factor of about 4 is p0851b1e if, instead: of storlng

‘5"‘* o 5o
1) : s We store separately the forecast and analysis error varlances X)
D =  diagonal part of ,\) s
-5 a

and correlation matrlces (:

. ' X 40
‘5'0 ‘Sa & -Sn
: Y
¢ =(07) (D
Since the numerical values of correlations lie between =1.0 and +1.0 by defi-
nition, eight bité of storage per COrrelatioﬁ, sey, would probably allow ade-
quate precision: entire halfwords (otffullwords) are not necesary. The cost

of. this approach, which we have not yet tried, would be' somewhat increased

execution time.
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IV. Computational Considerations in the Analysis Step

The "analyéis step"-(2.4c—e> is generally less expensive in meteorolo-
gical applications than the “"forecast step” (2.4a,b) becauSé at least omne
dimension of most of the matrices and vectdré involved in the énalysis step
is p, tﬁe number’of observétions, which is quall& much smaller than the
number of state variables_g: k*ﬁ' is p xﬁn, *(&‘ is n.x-p and 1{& is
P X p. For global-scale anélysis, the number of observatioﬁs per time step
is far smaller than n, and even if ébservations are grouped in six-hour win—
dows, their number is muchxless thanlg, Even fér the next generation of
mesoscale models, which will assimilate'wind—profiler data, one expecté model
resolution to exceed data quantity.

Still, the analysis step‘does represent é large calculation, and one must
pay attention tb tﬁé computational cost. The most expensive part of the ana-
lysis step would appear to be (2.4c), in which ome must either invert the p‘X )
matrix \‘\& ?l: \'\1 +R'& or, more simpiy, solve n linear systems with
this matfix as the coéfficientrmatrix. A remarkable factvabout the analysis
step is that it can be‘formulated'as a compu£ationélly'efficient algorithm
which does not require ihﬁefting, or‘solving éystems Witﬁ,’p x p matrices.

The intuitive ideé iélto view the observations at time step k as occurring
in factybver a seqdencekof “time steﬁé* over which no dYnémics (2.4a,b) take
place. One should therefo;e bé‘ableuto-apply the anaiysis step (2.4c-e) to
each observatibn in ‘turn, énding‘ﬁp ﬁithlthe same result as if the observa-
tions had been processed simultéﬁgbﬁély. - That is, performiﬁg p analyses
accordiﬁg.tq (2.4c—e),rbne:bbééiﬁétion pér anélysis, sﬁould be, and in fact
is, equivglént to‘perféfming:a single anai&sis_using all E_observations.

Such an aléorithm‘is very_effiéiént-pécausé‘the linear Systéms to be solved

are now all scalar: p=1ifor each analysis.. This idea of processing observations
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Serially, i.e,; ooe?at:a'tioe,Lis‘a faﬁiliat one:in the estimation literature
aﬁd has beenﬁimplemeoted:inia'number/of waYé (e.g., Biefman,'l977). We de-
scribe a very simple‘ahd rathetvstandatd implementation here.

Vbefore describingbthe algorithm,bwe stress again that the Kalmao analysis
equations (2. 4c—e) are identical to the 01 analySis equations, given a fore-
cast error covariance matrix- Tz . The serial observation-processing algo—
rithm to be described would therefore be useful in OI schemes asvweil as in

the Kalman filter. The algOrithmbis mefely a convenient and5efficient way of

.implementing the analysis equations; it is algebraically equivalent to (2.4c—e).

The‘algorithm represents a significant departure from standard OI implementa-—
tione,rsuch as the OI system at NMC which loops over analysis grid points

rather'than observations. Serial processing of observations would be especially

convenient in an operational setting, since observations are processed as they
"become davailable: ‘there Would be no need to start the analySis from scratch

at later data.cutoff.times.

In formulating an ahelysis algorithﬁ, one can and shoﬁld take ad&antage
of the'particolar structure of obsetvetion error covariances.-cFor exemple,.
many pairs of’meteorological-observations_bave=uncorrelated errors, sucb as
observations‘from different instruments.. The algorithm we describe takes ex-
plicitbadvantage of this fect,‘and gains efficiency the more uncorrelated
obeervatioos there are. ‘We begin by describing how the algoritbm takes ad-
vahtege of uncorrelated  observations. >Since all our discussion in this section
concerns the analySie at a sioglertime stebpg; we wili oﬁity& as a subscript:

tbe observation model (2.3a,c) is written as
HW'\"&J 5 ‘ » ‘ (4.1a)

(%Y: R, = | | (4.1b)
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. and the analysis equations (2.4c-e) are writtén as’

_ ? H (\_\? “ +?\) _ _ (4.2a)
P (I e, i
cedekGR

it

n

That many pairs of observations are uncorrelated means that R has a

block—diégonal structure,

R= Q 5 | L (4.3a)

, 3.
. where each block Rﬁ y 3=1,2,40.,J, is a ‘P,) S 1‘)3 matrix and
?‘_‘.?ﬁ ‘|'P3 = P , the number of observations at time step .IE" Thus there:
‘ e ° e » ‘ ‘
'v ) are J batches of observations, b.f‘) b&a_) Ty \,53. s, each US;; being a Fﬂ -vector,

 such thét,different observations in the same batch may be correlated, but ob-
servations in different batches are not correlated. If we partition the full

. o . . . “.
observation vector W and the observation matrix H as

05\0 . \;‘
Wy _
‘Uo'° = -& , (RY\A\" H = & ’ o . (4.3b,0)
ws | o Hy
w;tl'ere each \'\ is a.. ’h)&‘!\ ' matfix, and similarly partition the observa-
tlonal error vectdr 95 , then: the observatlon model (4.la,b) becomes simply

H N - n’ Cek | , (4.43a)
| S E Ur;)(ﬂ) = Rj _ | B | G
o for rj"'=,1,2',;...:,J.‘, | | ‘
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. Now, suppose we define . .

= R A T S
’\),,'_“ ? N _»Wo =W e - : ~ (4.5a,b)

The precise statemeﬁf'thaﬁiobseryatidns maykbe processed serially is that if

- we calculate

X, = ? \x (H ,‘\%‘ %’\\)

n

(4.6a)

P = ( \4 G ) . BRI | | (4.6b)
o S O S (T S . hobe)
T e Ks(a vy, oo
for j=1,2,...,J, then in fact:
. a . :
13 = ll ' and W= W ; o ' (4.7a,b)
3 : o : 30 . , :
3 ' . o
. - where w5 . and fP are the analysis vector and analysis error covariance

matrix-rhat would be obtained'froml(4.2a—c). "Equations (4.6) reéresent,far
less comﬁutatlonal effort than equations (4 2) the relevant dimensien of
‘-the matrlces in (4 6) is ,?5 ', whereas in (4.2) it is E_itself. In practlce,
the maximum number of intercerrelated observations, such as‘these from a
81ngle instrument, is. far smaller than the total number of observatlons avall—
able. We prove the equivalence of (4.2) and (4. 6) in Appendlx B.
Equations (4.6) descrlbe_only one part of the serial processing algorithm:
We have sheWn so far only how te proeess uncorrelated batches of data inde-
pendenrly.: The data Within a bateh arercorrelated and we musr'still show. how ~>
to process them serially, i.e., how to carry our a single steprj of (4.6).
_We w1ll show, essentlally, that one need only consider the case fﬁk \v :
one can decorrelate those observations whlch are correlated. Before showing

‘. how to do this, then, we flrst descrlbe in deta:Ll how to 1mplement (4.6)
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vhen =t - o o S

In caseuiﬁﬁf {4 , i;e}; batch_i consists of‘a single.Observation un—
correlated with'al;;thé othéf bbsérvati0ns,‘then ﬁk&' is a scalar, \xs is
a row vectof of 1ength.3 éﬁd.\‘5  is>a‘colﬁmn veCtof of length n. To conform
with the_éonvention‘that matriées,\éqlﬁmn‘vectors aﬁd scalars are generally
deﬁotedkby upper-case Roman, lower—ééée‘Roman, and lower—case Greek letters,

réspectively, we:write‘ : ‘ : e .
: o Coq
Oy = Ry \“ = ¥, TR ST (4.8a,b,c)
Equations (;.6) tﬁéﬁ beCoﬁe .
7 . L ., - | ‘
ﬁﬂ = Pﬁ" hj (\.‘3 ’Pj—\\hj + 0‘5 ) : _',' , . | . (4.9a)
o e . , |
?1 = (I ~'ﬂlhj ) P‘j'i 9 - ‘ s - ae8m)

w; = A-‘_, +2l ( 3\) | | (4-9¢)

Noting that the factors in parentheses in (4. 9a) ‘and (4 9c) are scalars, and

that the vector ‘) \\ _..appears several times, we have finally the serial-

processing algorlthm:

P W

3 S | K (4.10a)

- T . 2.’ . } »
°‘3 = \r\;)"f~j + 5'5 y | I (4.10b).
{ (4.10¢)
: Jb' W™ — \f
A SRAC T |

b C(j 8 (4.10d)

&y = v ~hy W '
Uda = ‘+ Qa \ (4.10e) .
?.' - ’P.'\ - .f\g:r o | (4.10£)
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.b While equations (4.10) describe a computationally efficient algorithm

for assimilating a single observation, one must still pay attention to details

.

p

sparsity must be taken into account. If the observation falls at a grid point,.

of implementation. For example, the vector \\ is .usually sparse, and its

then \\& consists of a single one and the rest zeroesj N, in (4.10a) is

)

then simply a column_ of ?34 . We note also that when the banded approxi-
‘matiop is applied, the outer product in (4.10fj can increése the bandwidth
iﬁ‘principle, but we do mnot calcﬁlate the extra bands. Finaliy we note that
the nﬁmerical stability of aigorithm.(4.10) can be enhanced by some additional
~ calculation (e.g., Bierman, 1977, p.28; Bucy and Joéeph, 1968, PpP.175-176),
although_wé‘have not encountered stability problems with the alggrithm as it
standé. |
It remains to show now only how to process correiated data, i.e., how to
. process a batchv of observations M; with ?‘) 7\ « The ideé is s’imply to
decorrelate the observationms. 'Supposeiwe let
N1

‘r\\i - Li ?\'3 L5 | _ . | | (4.11)

be a Cholesky decomposition: of ik' (e.g., Isaacsoh and Keller, 1966), i.e.,

1 -

LA is a lower triangular matrix with all ones on the diagonal, and}}Rj is
diagonal. If weHset:
. i

Y L-\':w_q, : '\:\‘ X “ PO i L:l b '
W, =< it j ) 3" . j“‘ A9 D.rj e 3 95) N (4,°126_1’b’c)

then in terms of the‘tilde—quaﬁtities,‘the observation model (4.4a,b) can be-

- written

| L e
VAR Y + 2 (4.132) .

‘ E(%D(ﬂ:;)l :,’ﬁ\ . = .(4.13}))
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- Egs. (4.13) and (A.A)zarefideﬁfical iniform, but the new observation error co-
4 . R~ C \1‘,  - : - ‘ R L .
: variancegmatrix’1‘5 is diagonal: ‘the new observations .W; have uncorrelated

)

errors and can»thereforerbe processed ‘serially.
The additional work involved in processing correlated observations, then,

is that involved iﬁ;(4§ll), (4;12a) and (4.12b). This can in fact be done

. - T b .
serially: for i=1;2,...;?ﬂ “‘one calculates the A - row of t‘j , the
Th » = LW : ~ 9 .th
A diagonaljelement,of'115 , the X element of UJ& , the = A row
- v . , .

of ~H% , and finally.processes the oBServation (equations (4.10), but with
i;réplaééd by_i ana‘with‘appropriate‘tildés)f  The’amount éf extra work ié
not iarge since. ?5 ' is usually rather sméli; as in the case of a radiosonde
ascent. Further, "li ~typically has a sma11 bandwidth, which can be exploited
in tﬁe Cﬁdlesky deédmpoéition. In addition, the Cholesky decomposition for
any"¢{5IWMiéﬁ ié cohétant in’timeacan Be‘caléﬁlated once‘and for all.

Aé‘a final remark, we poiﬁt out” that iﬁ proceséing correlated observations
we are, in fact, édlving linear systems, éé.indicated by (4;11, 4,12a,b), ‘They
are small, howeyér,,compéféd With>(4.2a): ?£:<< ? . They are also easier.
to solve than t§ sdlve'(4.6a) directly: ﬁ\j itself has more properties to‘bgv
éxploited than does \‘\)?ﬁ" \-\-; + Rﬁ . |

’
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v . Ve The Shallow-Water Model .

We have chosen to apbly the Kalman filter for a linear, two-dimensional

‘shallow~watef system:

Uy “‘U”*x + ¢7< - (5‘ "U-J)’U‘ | ‘-; . (5.1;)

i
o

‘ - 5.1b)
0 Y | ( )

’U;. +U'U'x +¢»§ +§\)~ 

G +UQ ¢ @(ugvn) 4.@3'\)’-:@ SRR L ate)

The coordinates x and y point eastward and northward, respectively, E and v

are the_eastward and northward perturbation velocities, and Cb is the pertur-

bation geopotential. The mean zonal current is a function of y, U = U("a), ‘

which is in geo’strophic balance with the mean geopotential @k“a) ’
‘ = 0 | '
. ‘ ‘5_ U+t @“3 ) ; ' , . (5.2).
The Coriolis parameter is given by
- o ‘ 5.3.
-5 ~ &; + ij, (5.3a)

The model domain is a 6000km by 6000km square extending from approximately

15 N to 75 N,i and we take

PRRAE o . L R | ‘
o4 zaflswIs B =0 ws (5.3b,¢)
o ‘

We specify periodic boundaryfconditions at the east and westkboundaries, and
tangential flow (v=0) at the north and south boundaries.

The energy E of this system,

2 %SS[@(uﬂﬁf‘) +¢2J "‘I““‘a,» | B

tit

E
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satisfies - . . SN o | |
%.% | Sg@() u'\s o\'xd*a o ‘: o ;» -.('5.41.:)
_Fvor the experlmeets reportedv here we take U to be constant,

whlch, in llght of (5 4), glves rlse to a stable, energy—conserv1ng flow.

We also take~“§wb SEC RN P ; .
$-8 -(sum,

9,

(5.2). Experiments with a barotrobically unstable profile U(y) will be

3IXI0 w gt o ‘ 550

feported in forthcoming work.

To obtain discrete dynamics A&r » we have chosen to apply the Richtmyer
twd step version of the Fax—wendroff'seheme (Richtmyer énd Mortoﬁ, 1967, Sec.
12.7 énd 13;4)‘to the continﬁous system (5.1). This finite—difference scheme
. is éecond—order accurate both in time and in sbace. In addition it has the
advantage.of using only twdbtime lévels: a three—-level scheme such as leap4
frog woﬁld‘artificiallyrdouble the number of state‘variables,ileading to‘in—
créased execution time and storage requirements, especially in the covariaﬁce-
‘_evélution‘equation (2.4b). instead of‘LaxfWendfoff, we planleventually'to
- intbrpérate.a fully implicie schémé (Augenbaﬁﬁ.gg_gl., 1985; Cobn et al., 1985)
ﬁhich also uées only two time levels, and is second-order accurate in time and .
forth—orderbaccﬁfate in space. The fully‘implieit scheme would allow a large
‘time step‘and thereby reduce the,cdst'of evblving the forecast error covariance.
Whilebthe Vérsion of Lax-Wendroff we have applied to (5.1) is rather

standard, our implementation of it is somewhat unusual because, as discussed in
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  Section 111, We‘aétuaily c§mpute7éﬁd s?pfé’tﬁe eleﬁents of r§r «  The details
df‘this‘caiculéﬁionfare_giﬁén{in;Appéﬁdix.C;y:Since the coefficients in (5.1)
are independent of'time,'so;ié ’cq{‘,‘and ﬂ?{”is thereere calculated oniy
once fof a givenﬂmOAéi regoluﬁion.‘kThé_cost of the forecast step (2.4a,b) is
simply that of thé indicatéﬁ métrii;vectorfand matrix-matrix operations.

We have run the Kalman filter’for our mogig at various spatial resolutions

and for various specified bandwidths b of lh + Table I1 summarizes the

o +
(‘i,\ to ’\3‘1 s €(Q (2.4b),

CYBER 205 CPU time which was réquired to'advancé'
as a function of b and of spatial resolutibn. The entries show that, in all
cases, the CPU times are well within,acceptable limits. In faet, it is only
"the lack of adequate étorage capacity'éh the NMC CYBER.ZQS that limits the
resolution of the model: missing'entries‘in the‘tasle correspond to experi-
ments Whiéh are not feasible due to‘thékexceséiye paging they would réquire.
The MFLOP rates indicated in the table demonstrate the efficiency of the
diagonalwise matrix multiplication algorithm described in Appendix A. The
MFLOP rates are mearly independent.of’bahdﬁidth, since the average vector
(diagonal) léngth is, and the MFLOP rates increase rapidly with reéolution,
as the average ve@tor length.increasés; At 60 x 61 resolution, nearly 907%
~of the peak efficiency of the CYBER 265 is attained.

Table iI demonstrates both‘the nééessity and the succeés of_the baﬁded
approximation.' Oﬁly‘a very low resolution mbael.is poSsible without the banded
approximation, and one time step on the 60 x 61 grid with Bandwidth b=3 takeé
only 2/3‘the‘CPU time. of one timg step on the 20 x 21 grid wiﬁhout thejbanded

approximation. On the 60 x 61 grid, a conservative CFL calculation yields a

f 3 v . .

160 % 10 w

L —— S
400 wn g™’

timestep and the 2.15 CPU seconds per.time step for the 60 x 61 grid with band-

maximum time step of =250 sec = 4.17 min FWith a 4-minute

width b=3 indicated in Table II, this means it takes only 12.9 minutes to



24

. evolve the covariance matrix over one day of data assimilation. The analysis
step (2.4c—e) requires only a small additional amount of time, which depends

on how many observations are to be assimilated.
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VI. Numerical Experiments

‘ The Kalman filter differs from OI schemes in that it uses forecast model

" dynamics to attempt an accurate determnatlon of ‘the forecast error covariance

matrix ? S‘1nce we take '11/' Hy Q and R to ‘be known here, ’ the Kalman fil-
£ .

ter determines ? ,e’xactly. The- focus of our numerlcal experlments will be o
4 S

to examine this ? , and its: (zlevpendence upoﬁ data distribution, model error,
- and the banded approx1mat10n. This is dor‘lei" by plotting the forecast error
Standard dev1at1on flelds, obtained from the ma1n diagonal of ? o and the
| correlatipg fieltls“' k ebtvained byi \divid‘in‘g o'fffdi;agonal elements of P‘f. by
' the standard detiatioﬁs. ; | | |

Most of theexperlmentswererun on al6x 17 grid, kWith_ AKX = 18 min,
so that Q% = A"3=375 km aﬁd "there 'ate n=3x16x17 = 816 state variables.
Results of high-resolution ex'periments were qualitatively similar to those
for the 16 x 17 grid, andw1ll be '»ci'i:scussed at the end of this section. We
- take the observationai errors ‘to be'uncorrelated, and to ﬁeve standard devia-
tions |

°

Gy = Oy = AwWs B | (6.1a,b)

“for w1nd observations and

6; = 20w x zoms A | | (6.1c)
- for geopotential dbservations R is a dlagonal matrlx w1th entries (5 ) s

~\® )
.-(6,\,\ and (64; placed accordlng to the observing pattern H, which we

will vary in the experlments. Observations are made every 12 hours; in be-

‘ . o o 4 BN 2
tween observations we have simply u)'h = w’b and ‘b_ = Pla.. in place of .
(2.4c—e), i.e., only (2.4a,b) arekapplie’d. The_initial (analysis) error

! O

covariance matrix, 'Po » is taken to be diagonal, with the square roots

of the diagonal-elements given by
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6 & o -\ @ ~x . | : ' .
Gp =6y = 3mS" | & = [00wmy lOms™ (6-2a,b,c)

‘each of: (Q:)a\ , (5.:); and LG; )1 appears 16 x 17 times along the diagonal.
Solutions of the shallow-water system (5;1)=are lndependent of the x- |
coordinate if the initial data are, and our discretization"§{ of (5.1) re-
tains this property. It follows that if the observing pattern is 1ndependent
- of X and if <§)L and P are homogeneous in x, then Tl. and ?l will be
homogeneous in x, i.e., the standard deviations will be independent of x
and the correlations will be independent of the x—coordlnate of the base point.
Clearly we have chosen ‘P to-be homogeneous in X (1t 1s homogeneous in y
also). As described below, we Wlll always take CA}X to be homogeneous in x
also. In all of our experlments, then, 1nhomogene1ty of 13\ -in the X—dlrec—
tion is due solely to x—direction dependence of the ohserv1ng pattern %%L‘
we will be able to study the dependence of EL upon data distribution in a
very preclse way. A summary of the experiments appears in Table III.
As a simple test of the Kalman filter, in our first experiment we_choose
an x—independent observing pattern: ue observe each variable u, v, ¢ at
each gridpoint'along the center of the channel, i.e.;‘at (1,9),(2,9),04.,(16,9).
Thus_there are 48 observations; H is a 48 x 816 matrix, each row ot which
contains a single one and‘theyrest zeros. In this experiment we -also take
Qk SR (6.3)
i. e., we assume that ‘the forecast model is perfect. The banded approximation
is not used 1n_th1s experlment: we calculate the Kalman filter exactly.
b'Figures‘l 2,band'3 Show?forecast error standard deviations and correla—
thons for thlS experlment at 10 days, well after the filter has settled into

steady state (cf. Ghil et al., 1981, esp. Sec. 4.3). Figures la, b, c show
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) » . o oo
the forecast error standard deviations for \f\ = 43/ o W § » u, and

i} respectively.' Eaeh:field‘is independent Of_E;;and haé a locaL minimum
along the centef line;j=9; where observations were taken 12 hours previously.
:'In each case ﬁhis local minimum is lees then the correspondiﬁg observation
error standard deviation (6.1); iﬁ the case of E_it is‘far less. The initial
error (6.2) has been reduced dramatieally. The standardvdeviations;for_g and
X;reaeh local maxima on both sides of the center 1ine; then decrease sﬁoothly
toward_the north ‘and south bounderiesi_ the bouﬁdary condition v=0 is equiva—
-.,lent‘to obserﬁiﬁg X'there. On the other haed{_the,staﬁdard deviations for h
increase monotonicaily from the center iine to the boundaries, fester toward
“the north‘boundary'than toﬁardvthe south'boundary; reaching:the observational
error level of 20m at the north boundary. Evidently, "observing™ v at the
ewalls has littie_effeet upon h there. |
‘Ih Figure 2 we show c}g-¢ _fofecast error correlations at 10 days ‘for the

first experimeﬁt; Since . EL is homogeneoue in x, we'only vary the y-coordi-
nate of the base point: Figs; 2a-e show, respectively, the forecast etrer
correlations:eentered at points (9,7), (9,8), (9 9), (9 10) and (9,11) One
‘ﬁotices.immediately that the correlations are not very homogeneous in y: the
fiﬁe panels are rather dissimilar. The correlations'are also quite different
from the homogeneoes corfelation functions specified,'for example, by the 0I
system at NMO; whose contours are concentric circles.‘ Significant cor;elations
exist well away from the base pointf In Fig. 2a; for example, points along
the entire south wall are correlated with the base point with a coefficient of
greater than 0.5._eTheucOrrelations for bese points.af and above the line of
observations (Figs. Zc,d,e) are somewhaﬁ less spfeadvqut than those for base

points below the center line (Figs. 2a,b).
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.- . Figure 3 shows the u-—ct: correlations corresponding to the ClJ—ch correlba—
tions shown'in Fig, 2; Again the correlatidns are‘not'at all’homogeneous in
y.  Figure 3c, in which the,base‘point is the central obééfving station (9,9),
is somewhat reminiscent of‘the LL'Eﬁ .correlatioﬁ used in the OI system at NMC,
although its amplitude is decreased;aﬁd two lobes are présent downwind of the
basé'poiﬁt. The other four panelé are strikingly different from Fig. 3c,veven
though theibése points are only 1-2 grid p&iﬁts‘away from that of Fig. 3c.
This inhomogéneigy is-explained, at'least in'bart, by the fact that the base
points in Figs;t3a;b;d;e1aéé;ibca£ediiﬁ‘pﬁé midét of.subéténtial‘gradients in
tﬁe height;fie1d4f§;ééd;tfgyforJStéﬁdérﬁ deﬁiafion (Fig. la),bwﬁile'this
gradient is (&gér1y) iero aé“Eh¢ Eaéé E¢i“§f<9i9){  Cohn and Morone (1984)
havevshown'fﬁéf such étadients‘faAiCallj éiter“the shaﬁe of wind;heightband
Wind—wind,forecéSt‘effér correlafﬁgpé;”.Compafiéé% of Fig.v6a.of Cohn and

‘ Morone (1984) Wifh Figs 3(&%._,b’ .hér”é sunggéstsv that this effect is a dominant

cause of the inhomogeneity seen in Figs. 3a-e. Whenever it is true that wind-

- field forecast errors are related diagnostically to height-field forecast
errors, therebcan in fact‘be oﬁly”ohe-othér céuse of wind-height and wind-
- wind fqrecast«etrér correlation iﬁhomogeﬁeity, namely inhomogeneifyﬂéf the
height-height cprrelafion itself (Cohn énd'Morone, 1984, Eqgs. 2.15).
Expe?iﬁent 1 is unrealistic in thatba‘perfect'model was assumed. Experi-
ment Z‘is idenfical to Experiment 1; except that model error is bresent. We take‘
the model error to be uncorrelated, i.e., le.ié diagonal. We take the model

error standard deviations to be independent of time and space: the squares of

x_ % _ &k a4 |
o, =0, = X 0.5 wms , .
“. T8 qax3goos T T (6.4a,b)
‘d; . A% X bw X [0wms™ ,  (6.4c)

‘ _' T 1L %3600 B
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appear,répeatedli,aloﬁgvtﬁéfdiggéhél qf‘ (l£f=(§ . Thqs the (constanf)
growth rate‘of‘model érqu“fbrkwindjcomﬁOQénpsﬂié 0.5 ms™! per 12 hours, and
is 6 m per 12vhpﬁrs for heigﬁés;ff, |

. Figures 4—6 are‘the anaidgﬁéséofJFigs.blfB.fbr &hé second experiment. The
panels of Fig. 4 ;ﬁaw‘ﬁhe»same‘geﬁéraifpattéfns as those of Fig 1 while, as
expected;‘the forecast error standard deviations are now much larger. Albng
the line of observations, the forecast error staﬁdardbdeviations are now éome_
what larger than thé obServatiOnal’error standard deviations (6.1).

The ¢-<b forecast error V'correlations for Experiment 2, shown in Fig,
5, are much ﬁore homdgeneéus than for the first experiment (Fig. 2). They
are also much iess sﬁread out, énd nearly circular. The‘modél error, which ié
hoﬁogeneous and uncorfelated; has the effect of homogenizing and ﬁightening
the (il-dl v.forecas‘t error .correlations. The Correlatibﬁs of Fig. 5 are  in
fact, remafkably>Similar to the homogeneous‘fb“d) correlation ptescribed in
the dI system at NMC, even inv5cale,:AThe mean e—folding distancekin Figs.
5a-e is about 2 grid boints, i.e;, 750 km, while thg e-folding distance used
af NMC is 707 km,_ One caﬁ conclude that if the modei error of current opera;
tional models ié homogeneous enough and uncorreléted enough to outweigh the
inhomogeneity‘of observing patterns”and the correlations that arise from dyna-
mical causes, then a homogeneous, localized Cb—Cb correlation 1ike that used
in OI may be‘adequate; Théréxtent to which this is true éf currgnt and planned
models andvobserQingrsystems remains to be seen.

The &~ #* fbrecast error cofrelations shown in Fig 6 are again rather
inhomogeneous, and the inhomogeneity can be explained by - the same'afgument used
in reference to Fig. 3.v The correlations now, however, are all quite small.
One concludes that forecast errors ih this case are ﬁotngOstrophic, or. even:

nearly so, If they were, the correlations in Fig., 6 Would“morefnearlykresemble
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the usual Oi u—‘_di .e.orrelatlon, or OVI U\ 47 eorrelatlons accountlng for
gradlents of helght—fleld forecast error standard dev1at10ns (Cohn ‘and Morone,
1984, Flgs. 5a 6a), 51nce the ¢ 4’ correlatlons of Fig. 5 already resemble
strongly the usual o1 ‘¢’4> correlation. This is probably because our homo-
geneous nodel error (6,4)'feeds energy into ageostrophic, as well asvgeostro—
phie modes. We hane not yet attempted.to speeify separately the amount of
model error in geostrophic and‘ageostrophic modes, or rotational and divergent
modes.

In the remaining experiments, numbered 3-6, we observe along a line per-
pendlcular to the mean. zonal current: u, v and.t# are observed at the 15
points (9,2}, (9 3)s deey (9 16). Each of these experlments uses the same -
model error covariance Q that was used in Experlment 2, eqs. (6 43, We will -
study the effect of the banded approx1matlon. Experlment 3 does not use the‘
banded approx1mation, while in Experlments 4-6 We speoify the bandwidth
b = 5;,4, and 3, respeetively.r Apart from.the bandw1dth Experlments 3-6 are
identical (see‘Table iIi).' Agaln we plot the forecast error standard devia-
tions and correlations at 10 days.

Figure 7 shows the height—field‘forecast error standard deviations for
Experiments 3-6. Thedbanded approximation appears to be a good one: differences‘
hetween-Figs. 7a-d arevgenerally less than one meter. The only large differences
are confined near the\north wall. Foreoast‘errors are actualiy‘highiy correlated
along the entire length of this boundary, as other plots (not shown) have de—
monstrated so that the banded-approx1mat10n breaks -down there. 5till, there ds
no effeet more’than lfz grid points fromvthe boundary; Notice also that.the
standard deviation at each grid point decreases slightly as the bandwidth is-
decreased,'whereas we know that the true standard deviation actually increases

slightly: the Kalman filter without banded approximation (Fig. 7a) is optimal.
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The banded'appreximationuremoves some varience from the'System; zeroing out
7eff—diagonals of the covariance matrix makes it lese'positive definite. In
nractice_tnis should not Ee a problem.if the decrease is small, and it can be
“accounted fof;'if necessary, by increasing the model error covariance matrix_Q}

For such a simple experiment, Fig.'7‘demonstrates a surprising degree of
eomplexitf; of cburse, one no longer expecﬁs independence of x or y, as in
Figs. 1 and 4, since the observing patﬁern now depends on x (it is a discreteb
5;—function), and the_ceefficients of the'quel (5.1) depend on y. The stan-
, dafd deviatiens are smaller to‘the southeast of the observing Iine than to the
.northwest, indicating that this is the direction in which most of the informa-
tion propagates. ‘Such effeets_of propagetion of infermation are not accounted
for in presentfday 01 systems.‘ Notice also thatnobserving perpendieular to the
zonal cuffent is more effective at reducing height ferecastverrers than ob-
serving parallel to it: away frem the north boundary,bthe standard deviations
in Figf_7a are all 20—25.n, while in Fig. 4a they are 25-35 m over much of the
domain, Thiskis what one might expect comparing these two simple Observing
patterns. It also demonstrates the usefulness offthe.Kalman‘filtef,in per-
forming obsefving systems simulation experiments (OSSE)'fqr much more compii—
cated obeerving;patterns and systems,

b.Figureé 8 and'9, correspending to Fig. 7,.show the forecast error standard
deviations‘ineEnand_z, reepecti?ely, for EXpefiments 3-6. Again the degree of
complenity‘isfgreéter-ehan in.the first:two eXperiments (Figs. 1 b, c, and
4 b, c)> But‘lees then‘in‘Fig; 7+ The wind information‘appeare to propagate
-zonall§, rathefbthan'nerﬁhweeféto—seutheaSt, and isnsymnetric with respect to
‘tnenletifude;iine i=9. 'The perpendieular observing system appears roughly as
“effective asnthe peraliel one. in redncing forecast errors .in u and v: compare

Figs. 8a, 9a with Figs. 4b, 4c, 'Figures:S and 9 also show the success of the
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“banded approximation:‘ everywhere ih Fig. 9, and away from-the'bOundaries in
Fig. 8,>the difrerences:betweeh panels are uery‘slight.
| Flgure 10 shows the <¥ 47 correlatlon at the central point (9,9) for each
of Experlments 3 6. The small square in Flgs..IOb—d indicate the bandw1dth em—
ployed. The banded approxrmatlon handles the correlatlons quite accurately.
Even for bandw1dths as small as. b 3° (Flg. 10d), contours from 0.3 upwards are
placed well (cf Flg. lOa) : Only the 0. 1 contour, 1nd1cat1ng a negligible corre; v
lation for the purposes of data analy81s,‘rs mlsplaced sllghtly. Figures 11 and
12, whlch show the u;u and v-v correlatlons correshondlng to Flg. 10, also de-
" monstrate the accuracy of the banded aoorox1mation: only the +0.1 contours are
v distorted»slightly.t

We have carried outvto date a number of ‘experiments at resolutions of up to
60 x 60 points'over‘our 6000 x 6000 km'grid. As shown iniTable I, the banded
approximation is of utmost importanoe in these high—reSOlution experiments.
The results are encouraging:. the banded approximation apoearS~to retain its
vaccuracy, independently‘of resolutioh,- The reason for this is that, as reso-
lution is increased, we have found that the'eharacteristio length scales of
the forecast error correlations decrease proportionately.  One can expect this
to be strictly the case only when model errors are uncorrelated (as they were
in our’experiments), or at least have correlation 1ength‘scales which decrease:
proportionately With‘resolution,-and are large enough to overwhelm the spreading
of‘correlations indueed by/dynamicalleffects (compare Figs. 2 and 5),' Theore—
tical work‘invprogress is aimed toward determining the circumstances under
which model error due to discretization of the gOVerning differential eduations

satisfies these two requirements.
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VII. Concluding Remarkijh_

Wevhave~§e§ised and imﬁléﬁeegedla nﬁmberkOfffechniques which, taken‘toge;
,ther; render the.Kalﬁaﬁ‘filter pfeeticalﬁfor;aeeimilating data in two speﬁial
diﬁensions. Numerical experiﬁente ﬁsing a ﬁwd—dimeﬁsionai shallow-water model
'demonstrate, in a fairly realistic eetfing, some_pf tﬁe advantages offered by
the Kalmanffilter’over theeéfzﬁeﬁhodstin current operational use.

‘ Our ultimatevgoal in thierwofk‘ielto develop a Kalman filter which is
suitable fer roptine assimilation of deta intq a fglly three—dimensional model.
Experience gained With_the two—dimeneional code'suggests that this ‘goal is well

eWithin,reach; although not Without additional refinements to edr method. Tm—
provements mentioned in the text include using a fﬁlly implicit forecast model,
storing‘covarianees compactly by eebarating variances and correlatiqns, and
using extrapolation techniQuesxin the banded approximation. We are curfently
eiploring theée_poSéibilities, as well as additional ones, which should furfher
reduee the amounﬁ of - work required‘by thebKalﬁan‘filter, withklittle effect on

its accuracy.
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Appendix A. Diagonalwise Matrix Triple Product

-kHere Wevdevelop an éfficieﬁt’algorithm fof‘evaluating the matrix triple
product appearing in the éovariance»forecast eqﬁation (2.4b), which is of the
form - : k : S o ‘

. T .
,C‘-A_BP\ | ' ' o (A1)
where A and B are large squaré matrices; storéd‘by diagonals; and where B and
C-are symmetriec, BT=B éna c'=c. The algorithm obtains each diagonal oka in
-turn, by multiplying appropriate diagonals of A and B. ' For full matrices A and
B, fhe diagonalwise algorithm has about the same computational complexity‘as
standard row-column algorithms. In our épplication, A has only a small number
of nonéero diagonals aﬁd B does also when the Banded approximation is employed.
‘The‘diagonalwisé_algorithm gains cpnsiderable efficiency by exploiting this
fact. Vectorizatidh of the algoritﬁm is,ovér the elements of each:nonzero dia-
gonal. The vectors (diagonals) are long since A and B are iarge,'an ideal”
situatién for calculation on the CYBER 205.

First we introduce a notatioﬁ'which-éesgribes hOW the matrices are stored.

For a'géﬁeral matfix,G‘of“dimensidn'N x N, we number fromvl to N the diagonals
from the main»diagonai 50wnwards,- Diagonals above the main diagonal are num—
Befed.Z to N; Thus, suppose GF ’and,GU are theylbwér énd sﬁrictly upper trian—

gular parts of G, L
. 1)
>y

N

G=6+6 (4.2)
6;5: _Gx; Joe dshy N ond A=k | o (A3a)
Gl‘g = Gu) "S’*"f 4=3,00N ‘*“3‘ il gl (A.3b)
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Lettlng

N2 A=y ‘ 5'“" (A.4a,b)
we then deflne o » : ‘ |
e . _ L R . .
G [3\“'-] = Gl& for b N and l HN-n Gl s

G [am) T G R CA SET x:u,-_~-,w-mu+\ . (A.5b)

Ak : ¥k , L
G [)) \'\_j is the j element of the N diagonal of G‘ , .and

s:Lm:Llarly for G [A “] Notice that G [}J\h] G D; n] if G is symmetrlc.

, To store: G~ , say, we retain an array >4 (“ ) contalnlng the storage
’ L

address of the first element of each nonzero (i.e., stored) diagonal of G ;

. B ! '

the address of the element G [j) ] is then simply ©&4 (“L) *‘ﬁ-—l if the
th . Wt
ﬂL dlagonal-ls‘stored. If the Y\, = . diagonal is zero (not stored),

TR ‘ . L : ]
it is flagged by setting & (M )= 0 .

To describe the diagonalwlseAmatrix multiplioetion algorithm, we first
expand (A.l) in row—column form and split the result into upper and lower tri-.
angular parts.  Letting the dimension of A, B and C be I'x I, the )

element of.C in (A 1) is simply.

1 1 ﬂ
Ck}é ) E\ 12;\ & L(B“‘ ’)9‘ (A.6)
‘_or - s |
';C‘“l': 2; A;L by (A.7a)
where . :
1
TL = 2 BU P\jx . (A.7b)
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L

Since C is symmetr1c, we need only calculate its lower trlangular part CA R A'Z
3
For AZ-Q , (A, 7a) can be spl1t into three parts
ﬁ: N _ 1 ”l'_v»',
A, T +'Z AL + T AT (4.8)
_. R N Yoy Ry T = Py LSRR

Notice that the flrst two(sums_inﬂ(A.S) réferenceionly»the lowervtriangular~
part of A and the‘laet'Onevreferences-onlyvthe strictly upper triangular part
of A while the firstuSumlreferenees'only the"strictly‘upper triangular part

of T and the last two reference only the lower trlangular part of T we have

Z A T ‘*‘ZA T '1'2 ALJ;S (A.9a)

Similarly, (A 7b) can be rewritten as

T Z Bu A T 2— “m A i +Z i&At‘;n - 907

Y=y 3; A
(A.9¢)
e «
Z BM\A T 3= hrt Bx}“ A'\\i» LZ-H B“‘-Aﬁx T
The,symmetry of-B was used in the last sum in (A.9b) and the last two sums in
"0 -
(A.9e); YS is not stored or referenced.

The diagonalwise multiplication algorithm evaluates each of the nine sums

in (A.Q) by diagonals. We describe in detail how the first sum in (A.9b),
O S |
- B ) SR, A ‘ (A.10)
& .
gm A T o . .

is obtained; the procedure for the remaining sums will be clear by analogy.

T’“"s |

To begin we write (A.10) in cumulative sum notation, i.e.

Sov L=\,..‘)T_' | o - (A.11a)

e

h. DR (A 11b)

; v - ’ A1l
‘S'O‘(_ 9\"\)“‘)? : ( C)

3

| L : k
T,i‘;)'--::TE + B Ay o — N



The notation j_ h means to replace the 1eft—hand—31de by the rlght—hand—51de,
thus (A.llc d) are - equlvalent to (A 10) if T O initially, which we

take to be the case.

. The two 1oops (A, lla b) 1nd1cate that, tlle operatlon (Alle,d) is to be
carried out for each element (k,J) of the lower trlangular matrix TL‘ cf.
(A, 3a). These two loops can be replaced by one loop over .the dlagonals of T

and a second over the elements along a d1agonal of T : compar1ng (A.Ba) with

(A.5a), we see that (A.ll),1s equlvalent to

Jow wmy=1 I o | ( )
“£ox _)=\).‘. I-‘v),(-r\ ,‘ o | (A.12b)
¢ L=t ' : : : (A.12¢)
$o¢ ] l . 3 |
) . R (A 12d)
T [ﬁl ] =T [3 nT] T Ri"‘"‘v“ A}l . : '
The first subscript on in (A.12d) follows from the definition of the
diagonal index Wiy of ‘Eﬁ , 1o,
R~y L (A.13a)
~cf (A.k4a), so that | » ,
b= _ <\ . (A.13b)
: 'Ll & +“‘Y \ L » o
is the first subscript of 7o - The index k in (A.11) has been replaced

entirely by the index “1‘ in. (A.12).

The inner loops (A 12b c) reference part of the lower trlangular matrix
AL in (A.124), namely they reference the upper-left-most submatrix of A
of dimension_ (I."V\T'!' l) ’ X‘ I gt |) . Again comparing (A.Ba) with (A.5a),

we find that (A.12) is eqoivalent to

Sov M s Y T | | ~ (A.14a)
'50‘( Y\A: \);\- I.““T.l" . ' S (A-lz{-b)
—}m L= Imng- nﬁl i (Aulbe)

T [RM -1 Y\T] = T &-W\A«z n ] +BD\ Nyt~ ‘]A [R (A.14d)
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. The index j. has’ been ellmlnated in pass:tng from (A 12d) to (A.14d) by using
REER

the deflnltlon of the dlagonal 1ndex “,\ '~”‘"on Aoa s V:L._e., _ |
I Ll S e (A.152)
. (A.4a), which 1mplles that B ) | ’ .
/5 = S\’\”“A -\ . - v ‘ ‘ (A.15b)
Equatlons (A l4a—d) represent the algorlthm for calculating the first
sum (A 10) in (A.9b). The algor;thmls vectorlzed over the innermost loop
»(A.14c): the vector length is. I "“.1’“ “‘3\ . Equatlon (A 14d) states
that, for given “\% ‘and “\A 5 multlply together dlagonals Y\A of A and
S v vy
“A \-"(\_T"_\ of '?3 and add the result to diagonal Vi of T » offset by
“l\—\- - elements. The remaining sums in (A.9a-c) are obtained in a similar
 manner,
The overall algorithm for' (A.9a—c) requ:'tre"s storage for only. one diagonal
“of T or -T s rather than for the entire matrlces T "~ and ,Tu themselves:
the dlagonals of T -"Q vare oalculated only as they are needed in (A.9a).
This is p0531b1e because the loop on Ny is the outermost loop in (A.14), as
it is for the other sums in (A.9b c), and the (vectorlzed) loop over the ele-
; ments of a dlagonal of T or T is the innermost loon for the sums in
(A.9a). When the banded approximation is used, it is only (A.9a), and not
(A.9b,c), which is approximated: only those‘diagOnals of C within the specified
- bandwidth are calculated, of.conrse,'but all nonzero diagonals of T are calculated.
The algorithm, as it stands, ex“ploits‘the ‘symmetry of B and C to reduce |
b}o‘th storage and execution—tlme requirements:‘ ~only % and C are calcu-
lated and stored. I‘tkal.so reduces executionjt‘ibrvne by using the fact that A
~ (the model dynamics) is a banded matrix with small .Vbandwidth‘ only those dia—
gonals of T and T which- multlply nonzero dlagonals of A and A

(A.%93) are calculated in (A.9‘b,c). It is also possible to reduce storage
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requirements further by exploiting the small bandwidth of A. If A were
, L ‘ .o ‘
diagonal then obviously C could be overwritten on B .« More generally,
L ’ L '
for any A, C can be overwritten on B if auxiliary storage roughly the

.same size as that for A is provided. We have not yet implemented this idea.
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Appendix B.L Serial Piocéssinglof Observétions'

Here we prove thgféquiVéienté.bfn<4t2)‘and;(4;6).‘_It égffices to show‘the
equivéleﬁce for J=2; thé:general'taéé follows by an inductive,argumént.
We begln by wrltlng (4 2) in a more convenlent form. From (4.25) we.have
\(HP*\-\T-\-KR‘P W |
or |
CHPTRT K = PR
or

(1- %) PR,

which,fffbm (4.2b), can be Wfitten as G ) v
K= PRy S @
so that (4 2c) becomgs | : e | o . '
.waz wa, N .P ‘H‘\’ R-\ (‘wo _,H W‘S) . R | (5.53
Now, actording to (4.3), 7 ' | -

W, RO SR
H= y R=l oo e KT

W, 0 R,{ M,y'* 9 (B.32,b,¢)

so that (3.2) can be Written as
AR S ey
mm= UJ '\'P [H ’ \'\ ?\} w° * 3

“or

- T fups { 1‘-1' 4y}
',N&: w' +,\)o-{.\_\|,“\ (w,“‘“‘w ) +H, Ry {.”:‘“&wﬁ )] . (B.4)
The Woodbufyjformula stétés the two equations
-1
C=B-BA (ABNT+R) AB,

(B.5a)
B +ARA B o (B.5b)
are equivalent for arbittary.conformable matrices A, B, C, R, provided the

indicated inverses exist. = Since (4.2a) substituted into (4.2b) gives



o
BT TR
p = PP - (WEWTHR) HP,

it follows tﬁét . : o '
@) = () A WRTH e

which is a statement that the analysis accuracy is the sum of the forecast

“and observation accuracies. . Substituting (B;Ba,b) into (B.6) gives
-\ £\ T o B SO S |
L' Y - . . . .
(?) - K‘P ) + Hl R\ H\ + Ha Rﬁ- Ha. . (B.7)
We will show the desired equivalence by showing that (B.4) and (B.7) hold for
the algorithm (4.5, 4.6, 4.7).
"fTo show that (B.7) holds, we simply apply the Woodbury formula'égain, to
(4.6a b) with J 1 and j=2, to get : ' ‘ N S
o N\ ~\ ' '
@y ,Uo) + N R0H L (.8a)
ST T G SRR ST E R | -
(Pg_) T (P\) -+ H’v’Rt “‘l— 3 : (B.8h)
substituting (4.5a, 4.7a) here then gives (B.7). To verify that (B;4) holds,

we write (4 6c) for j=1 and j=2:

. S | '
L, wi oy ?\\ R‘(‘" ‘““9‘ ) ) |  (B.9a)

_ : -\ ° AW
W, o+ ’V;.“:"ph ("J" f\'\a'-w) r - (B.9D)

‘ whefe we have used an argument similar to that leading to (B.2). Substituting

[}

Wy

(B 9b) into (B.9a) glves )

,_qu-; w + ? “ﬁ‘R‘ UJ “ w

R R R TAE R T L
i W, =NJS | ¥ "‘.(I"‘ ?o.“z. ?‘; \'\z\ ‘\\'\? R '(_Nl‘“w" )
Sl Tl L . _—
"+?1HI RO (wy - W, )

(B.10)
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‘ wa, premultiplying‘(B'Sb):by ﬁP and postmultiplying by '?\‘ giVeév‘

?\,f— oy ni R"H? |

U31ng (B. 11) in (B 10), and u51ng (4 7a b), glves (B 4)



. , Appendix C. - :Finit;erDif-fefenee Scheme"

Lettlng u)' (U\ ) , the shallow-water system (5.1) can be written in
flux form as - |

| S iR
W "r B’XAW + 2 %%W"PCW

(C.1la)
where e
A =10 U‘ 0} B =10 0O | C'::_ < o L o ' ‘
o LD , D) ' + . (Culb,c,d)
| 0 U 0 @ 0 | |

& © 0

We will discretiz‘e (C.1) on a uniform grid of I x J points and denote the

elements of the discrete state vector by ' .

‘ L ~ . S . . .

| = A ax (3-0a | 5, | |

.. "J'».l) = w[(a) %, (4 ) “’a,hﬁﬁ , (C.2a)
for i=1,2,...,I, j=1,2,...,J, and k=0,1,2,... ., where ‘ :

X/'L o Am = \’/(j '\) o : .  (C.2b,c)

AT T Aol o«

and .

(C.2d,e)

X"'\{ = (000 k.

We let - ‘k I ’K S
V - = A o : :
(I\'R - A'x o) 7"& » L"(y e ‘. -~ {(C.3a,b).

and define the dlfference operators (Oox and %“'d by '

% i WW\ Ly T “V”"l g M,_ _w,‘ - W, (C.4a,b)

A ‘a"‘):l.. ‘A )3’y'\v
and’ the averaglng ‘operators )u\,x and IM :
| J.(w Xy ) ¥
AKX For (C.he,d)
IPRINEE 4 1»,,3+h,,,,3)7 oy S A 1% |
The Rlchtmyer two—step vers:Lon of the Lax-Wendroff scheme leads readily
to algebraic formulas for t,he elements of.the dynamics matrix (Y . The first
. - step of the scheme, as it is usually applied,’ ‘calculates provisional values at

centers 'of grid boxes,
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i A h ' (C.5a)
M&#,ﬁi Pex /“g Y ?L,+l ok yprk ) | |
for i=1,2,...,1"and J=1,2,aés;J-l where the operator L is deflned as
= L5 A, . (C.5b)
L A /“'&g A +7"3}“1(°~ng t M‘/U‘x//\? .

The second step uses these values to calculate

;33.)“ T S L N C e | - (C.5¢)
A-) ;3 ) U

for i=1 2,...,1 and J 2 3,... ,J 1 1“e.v, ,the values at the new time step on

_ the orlglnal grld, excludlng the north and south boundarles. We will combine
-(C’.Sa) and.('C,Sc) along w1th the boundary treatment. for u  ‘and v (descrlbed

~_ hx)

- later), tor give proVisional.val‘uee ,U\f ‘at ‘all" grid points. Then a boun—
‘ ha\

dary treatment for 47 w1ll be applled to glve the flnal values W .v

1
Thus r\Y w111 be a compos1t10n of an interior operator "¥ and a boundary

"operator AY r\Y PY "y _ ‘ . '
4\ By el I L I :
wht = Pkt ’“If ”‘Y BRI
8 1
- Most of FY is Just the identity; W does most of the work.

To arrive at Vformulas for the elements of "‘Y , we first expand (C.5c)

using (C 5b) and (C Aa—d), to f1nc)i‘ " v
= bt 'J b‘\'z " hat
= W\u M " M—’- - w.

)'5 - G L SRS 3 *—’E):”%‘,
~ . : g . (C7a)
- . W
ot ey T W
where ‘ ‘
i = 5 i)\ ' . ) , (C.7b)
Magp ™ TLEMA +) Bm F 3 ),

2

by kel
N\i-‘,;)—-&‘ﬁ:(ix A \,“’\ Bj_, —b A C, Q . (C.7c).
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nd’ agaln expandlng operators glves finally

N R T ...Nta’,iN 'M N ]
[MWNWH\I\L_LN“J [N\ NG+ ’
“[ M, ""N\a 4 N ] [M J-Noh "'M‘i,—g 3“} %4.
[N\ a.n-N\\ »'r\ o)*\ EN\' & Nr‘} Wi e | R
R 0‘1 e p/\ -aN*"] o o

+

Substltutlng (C 5a) 1nto (C 7a‘

where ’
19 ' _ 4 5"'3'.
N' :LIaM

Mok gl  (c.8b)
8 ) : - L
4,;-:\:-',—_)1_:\:%_ L‘. TR . . ‘

Equation (C.8a) gives for each interior point i=l,2,.{.,I; 3=2,3,44.,J"1,
B L. S v ' ‘
the value of 0515 directly in terms of values at neighboring grid points at
the previous time step. Each bracketed expression in (C.8a) is a 3 x 3 matrix,
R : o h
and ngl"is composed of these 3 x 3 matrices. The symbol I in (6.8a,b) denotes
the 3 x 3 identity matrix,'not the number of grid points in the x—directioﬁ.

The boundary condition

a5 = 0 B R (c.9a)

.at the north and south boundaries implies, according to (5.la,b), that

ty + Uiy + &, =0 N O (cow)
and R ' | | :
“3?.\3 .y '§Uk =0 . | o (C.9¢)

there also. Equation-(C.Qb) is treated by the.ordinary Lax-Friedrichs

’scheme ot

k! (C.10)

o =(g}u;—) - -ﬁx/u«,(% (U ;’“ + )
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The diagnostic equation (C.9¢) is treated by first—order uncentered differences:

Ssaa?rs; +5 U\ ' }7—0' 3 (C.11a)

"5 |
‘ . S ' . _
Q) A 5 j'“\ -0 , , . (C.11b)
y, T R
%

According to (C.ll), the boundary values of <b depend on the boundary

values of u at the same time. step, which necessitates our solving (€C.10) be-
fore (C.11): equatlons (C.9a, C.10) W111 be formulated -as part of the interior

; 3 oy
operator<ﬁ*S s and (C 11) w1ll be formulated in the boundary operator ‘qg

We write (C 9a, C.10) as

,q.h*f ;_’[1 N A] :‘ +J—[T + Ax A]

'3 . ‘(C.IZa)
-for i=1,25¢.¢,I, j=1 and j=J, where
® {1 0 © | 'y U'5 o !
» , '
1T =10 o o P\' =10 O o).
3 3 , (C.12b,c)
0 V] Q O

© 0

Equations (C.8, C.12) complete the deseription of the interior operator ﬂQ{i,
which updates u, v and # at 1nter10r p01nts, and u and v at the boundarlee.

Note from (C 12) that .one application of qu also zeros out ¢> at the

"~ boundaries. Subsequent multlpllcatlon by §¥> , descrlbed next,iw1ll refresh

_'& - at the boundaries. Equatiqns «Lll)rcan be written as .

' et ; Lﬁ‘-“ ' bk\ _ 3 L
¢A§ : : ¢L S \ - AN& g s | (C.13a)
AR ‘ .
d?ﬁﬂ = 1;: o+ AN& S—'\ “i\‘ ) - | (C.13b)

; o %
‘ so that the boundary part of '\y -is given by
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il [1 E - A lw £°5
~ : 3 b ‘
LJ}JH ,a : * (C.l4a)

A\ B h*\ ”- 3.53‘k*\
w5, [1 £+A~ab} l:‘

for i=1,2,44 ,:I, Whe,r'e e

Q

H

(C.14b)

T oo
: Q- 0 o
bl S

o (Celébe,d)

The interior parf: 6f f\‘{j is jsimPlY' R
b ~_ k)
= W

V;;5 Tay o o (C.15)

for i=1,2,...,I and j=2,3,...,J-1.
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b s ¥ xJF
0o 933310k 577 x 577
1 1 81 | 3.7x104  192x 192
2 D25 L3 x10h 115 x 115
3 am  68.0 x 102 82 x 82
4. 75 41.2 x 102 . ehx 64
50  ‘ 1@89” i 276 x tgz!_;; 52 x 52
6. ;'1521a”7: . ;Li9,iii'102 e 44 X 44
;7 2025;.';"" \'T'iﬁ.Sixllb?L . 38 x 38
8 T.En};zéoi T e x 1oé”f ;: 33 x 33
9 S sme o e2x102 . 3030
full ey ,J"f} S,s;g'iQ2." 24 x 24

Table I, Storage requirementstfor pf,a ésba function of bandwidth b, computed

from the formula § = Nv2(2b+l)d; with the number of spatiai dimensions d = 2

and the number of dependent variébleS~v = 3; S is the total requiréd stofage

and N is the total number of grid points. The first column gives thé‘bahd—

width and the second gives the storage required per grid7point.' For avail-

able storage § = 3 x 106, the third column gives the maximum tdtal number: of
grid points and the last gives the maximum grid dimensions for a uniform
square grid. The last row gives requirements for storing the full Pfia,

using the formula S = (Nv)2.
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resolution
bandwidth b | - 20x 21 40 x 41 60 x 61
v H, 0.1 0% 0.27 (154) 0.52 (178)
3 % 0.48 (94) 1.10 (153) 2.15 (176)
s k 1.05 (93) 2.51 (152) N
7 ‘\ 1.84 (93) '
fFull \ 3.24 (89)

Table IL. CPU seconds required by eq. (2.4b), as a function of bandwidth and"
model resclution. Numbers‘iﬁ parentheses are the obsered megaflop (MFLOP)

rates for this computation. Peak rate of the CYBER 205 is 200 MFLOPS.
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EXPERIMENT # DATA DISTRIBUTION MODEL ERROR COVARIANCE . BANDED APPROXIMATION

1 farallelwto’basic‘flow ' S Q=0 : none
2 pa;éilelrto:basic flow  ‘4 "Q#0 | ﬁoné
‘3‘3 f‘ﬁefﬁendiédiér to_baéic-fléﬁ‘f o Q»# 0 . ~ nomne.

4 peféeﬁdicuiaf tévgagic flow - Q+0 | b =25
5 pgrpenéicdiaf‘to Bésic flow Q#+ 0 | b=4
6 ‘ Perpén&icﬁlarvﬁé Basié fl§w‘  'Q #0 : 'b‘= 3

Table ITT, _Summary pf expefiments discussed‘ih Section VI.
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Figure 1. Forecast error standard deviations for Experiment 1, (a) in the

height h = / 10 ms_z', (b) in the zonal wind u, and (e¢) in the meridional
_ wind v, at 10 days. Contour interval is one meter in (a), and one meter
. per second in (b) and (c). Tick marks indicate grid points.
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Figure 2. ¢-¢ forecast error
‘correlations for Experiment 1 at

10 days, for base points (a) (9,7),
(b) (9,8), (c) (9,9), (d) (9,10),
and (e) (9,11). Asterisk in each’
panel denotes location of base
point. '
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Figure 3. u-¢* fofecast error

correlations for Experiment 1 at
10 days, for base points (a) (9,7),
- (b)) (9,8), (<) (9,9), (d) (9,10),

and (e) (9,11).
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Figure 4. As in Figure 1, but for Experiment 2.
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Figure 5. As in Figure 2, but
for Experiment 2.
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Figufqmzf Forecast error standard deviations in the height field at 10 déys.
for (a) Experiment 3 (no banded approximation), (b) Experiment 4 (bandwidth
b = 5), (¢) Experiment 5 (b = 4), and (d) Experiment 6 (b = 3).
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but for the zonal wind u.

¥

"As in Figure 7

Figure 8.
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Figure 9. As in Figuref7,‘but for the meridional wind v.
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(d)

Figure 10. As in Figure 7. but for ¢-4> forecast error correlations at

point (9,9). The squares in figures 10 b—d indicate the bandwidth. Contours:

extending outside the squares in Figures 10 c¢,d are an artifact of the con-
’ touring routine. : : ' '



63

'v . L

- &5 ! E 0 ‘
— @ — =9,
u =5 - -
mEEEEEEEEEEENEN L1l L1111 l,
T @ o | (b)
o -
- =N - D,
- — D
— p— - <
‘:1 L L1 I_ Lt ity LIl ] LJIII | 11
7 (c) | | o ' (d) T

Figure 11,

point (9,9).

As in Figure 10, but for u-u forecast error correlations at
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Figﬁre 12.

As in Figure 10, but for v-v forecast error correlations at
point (9,9). : :



